Stereoselective total synthesis of (±)-fragranol by TiCl₄ promoted [2+2] cycloaddition of allyl-*tert*-butyldiphenylsilane and methyl methacrylate[†]

Hans-Joachim Knölker,*a Gerhard Baum,^b Oliver Schmitt^a and Günter Wanzl^a

a Institut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter-Allee, 76131 Karlsruhe, Germany.

^b Institut für Anorganische Chemie, Universität Karlsruhe, Engesserstraße, 76128 Karlsruhe, Germany.

Received (in Liverpool, UK) 21st June 1999, Accepted 22nd July 1999

A stereoselective total synthesis of the monoterpenoid alcohol (\pm) -fragranol has been accomplished utilizing a TiCl₄ promoted [2 + 2] cycloaddition of allyl-*tert*-butyldiphenylsilane and methyl methacrylate as the key step.

The monoterpenoid alcohol fragranol **1** was isolated in 1973 by Bohlmann and co-workers from the roots of *Artemisia fragrans* Willd.² The diastereoisomeric grandisol **2** is a sex pheromone of the male cotton boll weevil *Anthonomus grandis* Boheman and other beetles.³ Because of their structural features and biological activity both compounds represent important targets for novel procedures directed towards the total synthesis of fourmembered ring natural products.⁴ Over the past years we developed a novel synthetic methodology for the stereoselective construction of cyclobutanes by TiCl₄ promoted [2 + 2] cycloaddition of allylsilanes and acrylic esters.⁵ We now report the stereoselective total synthesis of fragranol **1** which is the first application of this strategy to the total synthesis of a natural product.⁶

The TiCl₄ promoted [2 + 2] cycloaddition of allyl-*tert*butyldiphenylsilane **4** and methyl methacrylate **3** afforded the two diastereoisomeric silylmethylcyclobutanes *anti*-**5** and *syn*-**5** along with the silylcyclopentane **6** in a total yield of 84% and a ratio of 14:2:1 (Scheme 1).[‡] The structural and stereochemical assignments were based on comparison of the ¹³C NMR data with those of our previous studies.^{5a} After chromatography the major isomer *anti*-**5** was crystallized in pure form out of this

Scheme 1 Reagents and conditions: i, TiCl₄, CH₂Cl₂, 40 °C, 4 d (84%, ratio anti-5: syn-5:6 = 14:2:1), then crystallization from this mixture afforded selectively anti-5 (67%).

mixture and structurally confirmed by X-ray crystallography (Fig. 1).§

For the projected total synthesis the silvl group had to be converted into a hydroxy group. We have recently shown that by modifaction of the Fleming-Tamao oxidation⁷ sterically hindered silyl groups, like triphenylsilyl, diisopropylphenylsilyl and tert-butyldiphenylsilyl, can be transformed to hydroxy groups.⁸ Using these conditions the *tert*-butyldiphenylsilyl derivative anti-5 was first converted to the tert-butyldifluorosilyl derivative 7 and then to the alcohol 8 (Scheme 2). The next task was to transform the hydroxymethyl group into the isopropenyl group present in the natural product. For the oxidation of the hydroxy to the formyl group we required reaction conditions which avoided an epimerization at the stereogenic center. Swern oxidation⁹ and oxidation with the Dess-Martin periodinane reagent¹⁰ provided good yields, however to a large extent with epimerization. Treatment of 8 with tetrapropylammonium perruthenate (TPAP)¹¹ provided a yield of 94% for the aldehydes anti-9 and syn-9 which were obtained in a ratio of 13:1.

Chemoselective addition of methyltitanium triisopropoxide¹² at the formyl group at -10 °C afforded the alcohol **10** as a 1:1 mixture of two diastereoisomers (Scheme 3). A further oxidation with TPAP¹¹ provided in 94% yield the methyl ketone **11** without epimerization at the chiral center. Wittig reaction using methylenetriphenylphosphorane gave the isopropenyl derivative **12** which was reduced to the alcohol **13** by LiAlH₄. Finally, a homologation of the primary alcohol was required. For this purpose the alcohol **13** was transformed to the aldehyde **14** by Swern oxidation.⁹ Wittig reaction using methoxymethyltriphenylphosphonium bromide/sodium amide¹³ followed by hydrolysis of the resulting enol ether afforded the homologated

Fig. 1 Molecular structure of *anti*-**5** in the crystal. Selected bond lengths (Å): C(1)–C(2) 1.570(3), C(2)–C(3) 1.538(3), C(3)–C(4) 1.532(3), C(1)–C(4) 1.541(4), C(1)–C(5) 1.507(4), C(1)–C(7) 1.516(4), C(2)–C(8) 1.525(3), C(8)–Si 1.883(2).

E-mail: knoe@ochhades.chemie.uni-karlsruhe.de

[†] See ref. 1.

Scheme 2 Reagents and conditions: i, BF_3 ·2 HOAc, CH_2Cl_2 , 40 °C, 4 h (87%); ii, H_2O_2 , KF, NaHCO₃, THF–MeOH (1:1), 25 °C, 24 h (51%); iii, TPAP (cat.), NMO, powdered 4 Å molecular sieves, CH_2Cl_2 , 0 to 25 °C, 2 h (94%, ratio *anti*-9: syn-9 = 13:1).

Scheme 3 Reagents and conditions: i, MeTi(OPⁱr)₃, CH₂Cl₂, -10 to 25 °C, 14 h (70%); ii, TPAP (cat.), NMO, powdered 4 Å molecular sieves, CH₂Cl₂, 0 to 25 °C, 2 h (94%); iii, Ph₃P=CH₂, THF, 0 to 25 °C, 2 h (65%); iv, LiAlH₄, THF, 0 to 25 °C, 12 h (99%); v, (COCl)₂, DMSO, CH₂Cl₂, Et₃N, -78 °C, 20 min (84%); vi, MeOCH₂Ph₃P+Br⁻, NaNH₂, Et₂O, -20 to 25 °C, 12 h, then TFA-H₂O (4:1), Et₂O, 25 °C, 12 h (78%); vii, LiAlH₄, Et₂O, 0 °C, 10 min (93%).

aldehyde **15** which on reduction with LiAlH₄ provided (\pm) -fragranol **1**. The spectral data of our synthetic fragranol (IR, ¹H NMR, ¹³C NMR, MS and HRMS)¶ were in full agreement with those reported for the natural product.^{2,6}

The present synthesis *via* the [2 + 2] cycloaddition of allyl*tert*-butyldiphenylsilane **4** afforded fragranol in 11 steps and 7% overall yield based on methyl methacrylate **3**. It has been demonstrated for the first time that the Lewis acid promoted cycloaddition of allyl*tert*-butyldiphenylsilane followed by our modified Fleming–Tamao oxidation represents a powerful new tool in natural product synthesis.

Financial support of this project was provided by the Deutsche Forschungsgemeinschaft (Kn 240/5-3) and the Fonds der Chemischen Industrie. We thank Dr John, Wacker-Chemie GmbH, Burghausen, for a generous gift of *tert*-butylchloro-diphenylsilane.

Notes and references

‡ Synthesis of anti-5: A solution of methyl methacrylate 3 (3.37 g, 33.7 mmol, 3.6 ml) in dry CH₂Cl₂ (30 ml) was added to a stirred solution of TiCl₄ (6.92 g, 36.5 mmol, 4 ml) in dry CH₂Cl₂ (50 ml) under argon at room temperature. After addition of a solution of allyl-tert-butyldiphenylsilane 4 (13.6 g, 48.5 mmol) in dry CH₂Cl₂ (30 ml) the reaction mixture was heated at reflux for 4 days. The mixture was hydrolyzed by addition of aq. NH₄Cl. the organic layer was separated, the aqueous layer was extracted three times with CH2Cl2 and the combined organic layers were dried over MgSO4. Evaporation of the solvent and flash chromatography (hexane-Et₂O 20:1) of the residue on silica gel afforded a mixture of anti-5, syn-5 and 6 (10.8 g, 84%, ratio 14:2:1). Crystallization out of this oil over a period of 14 days provided the cyclobutane anti-5 (8.6 g, 67%) as colorless crystals, mp 65 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.04 (s, 9 H), 1.12–1.27 (m, 3 H), 1.33 (s, 3 H), 1.44 (m, 2 H), 2.10 (dt, J 9.0, 10.8, 1 H), 2.70 (dddd, J = 12.4, 10.3, 8.4,2.1, 1 H), 3.67 (s, 3 H), 7.31–7.41 (m, 6 H), 7.63 (m, 4 H); δ_C (100 MHz, CDCl₃)11.43 (CH₂), 16.99 (CH₃), 18.11 (C), 25.29 (CH₂), 27.83 (3 CH₃), 28.62 (CH₂), 37.47 (CH), 46.75 (C), 51.44 (CH₃), 127.37 (2 CH), 127.52 (2 CH), 128.96 (CH), 129.00 (CH), 134.26 (C), 135.26 (C), 135.95 (2 CH), 136.04 (2 CH), 177.94 (C=O) (calc. for C₂₄H₃₂O₂Si: C, 75.74; H, 8.47; found: C, 75.65; H, 8.35%).

§ *Crystal data* for *anti*-**5**: C₂₄H₃₂O₂Si, M = 380.59, orthorhombic, space group $P2_12_12_1$, a = 7.900(3), b = 14.751(5), c = 18.956(6) Å, U = 2209.0(13) Å³, Z = 4, $D_c = 1.144$ g cm⁻³, $\mu = 0.121$ mm⁻¹, T = 200(2) K, Mo-K α ($\lambda = 0.71073$ Å), 10267 reflections collected, 4228 unique ($R_{int} = 0.0912$), 249 parameters; STOE IPDS area detector. The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least-squares on F^2 (SHELXL-97). R_1 [$I > 2\sigma(I)$] = 0.0523, wR_2 = 0.1392, absolute structure (Flack parameter): $\chi = -0.10(14)$. CCDC 182/1352. See http://www.rsc.org/suppdata/cc/1999/1737/ for crystallographic data in .cif format.

 \P Spectral data for 1: $v_{\rm max}$ (film)/cm $^{-1}$ 3352 (br), 3080, 2960, 2931, 2870, 1646, 1455, 1378, 1283, 1182, 1161, 1054, 886; $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.92 (s, 3 H), 1.41 (m, 1 H), 1.64 (s, 3 H), 1.67 (br s, 1 H), 1.72–1.84 (m, 4 H), 1.97 (m, 1 H), 2.56 (m, 1 H), 3.67 (m, 2 H), 4.61 (s, 1 H), 4.82 (q, J 1.5, 1 H); $\delta_{\rm C}$ (125 MHz, CDCl₃): 19.46 (CH₃), 19.73 (CH₂), 23.02 (CH₃), 30.23 (CH₂), 40.93 (C), 46.64 (CH₂), 50.52 (CH), 59.79 (CH₂), 109.77 (CH₂), 145.58 (C); *m*/z (35 °C): 154 (M⁺, 0.2), 139 (2), 136 (1), 123 (2), 121 (6), 109 (43), 107 (11), 69 (17), 68 (100), 67 (41) (calc. for C₁₀H₁₈O: 154.1358, found: 154.1349).

- Part 16 of Cycloadditions of Allylsilanes. Part 15: H.-J. Knölker, R. Graf, P. G. Jones and O. Spieβ, *Angew. Chem.*, 1999, **111**, 2742; *Angew. Chem.*, *Int. Ed.*, 1999, **38**, 2583.
- 2 F. Bohlmann, C. Zdero and U. Faass, Chem. Ber., 1973, 106, 2904.
- 3 J. H. Tumlinson, D. D. Hardee, R. C. Gueldner, A. C. Thompson, P. A. Hedin and J. P. Minyard, *Science*, 1969, **166**, 1010 and references cited in 4(c).
- 4 (a) J. A. Katzenellenbogen, Science, 1976, **194**, 139; (b) K. Mori, in The Total Synthesis of Natural Products, ed. J. ApSimon, Wiley, New York, 1981, vol. 4, p. 1; (c) K. Mori, in The Total Synthesis of Natural Products, ed. J. ApSimon, Wiley, New York, 1992, vol. 9, p. 303.
- 5 (a) H.-J. Knölker, G. Baum and R. Graf, Angew. Chem., 1994, 106, 1705; Angew. Chem., Int. Ed. Engl., 1994, 33, 1612; (b) review: H.-J. Knölker, J. Prakt. Chem., 1997, 339, 304; (c) H.-J. Knölker, E. Baum and O. Schmitt, Tetrahedron Lett., 1998, 39, 7705.
- 6 For previous total syntheses of fragranol, see: D. Kim, Y. K. Lee, Y. M. Jang, I. O. Kim and S. W. Park, J. Chem. Soc., Perkin Trans. 1, 1990, 3221; S. Yamazaki, H. Fujitsuka, F. Takara and T. Inoue, J. Chem. Soc., Perkin Trans. 1, 1994, 695; T. Martin, C. M. Rodriguez and V. S. Martin, Tetrahedron: Asymmetry, 1995, 6, 1151 and references cited therein.
- Reviews: I. Fleming, *Chemtracts: Org. Chem.*, 1996, 9, 1; K. Tamao, in *Advances in Silicon Chemistry*, JAI Press, Greenwich (CT), 1996, vol.
 p. 1; G. R. Jones and Y. Landais, *Tetrahedron*, 1996, 52, 7599.
- 8 H.-J. Knölker and G. Wanzl, *Synlett*, 1995, 378; H.-J. Knölker, P. G. Jones and G. Wanzl, *Synlett*, 1998, 613.
- 9 A. J. Mancuso and D. Swern, Synthesis, 1981, 165; T. T. Tidwell, Synthesis, 1990, 857.
- 10 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155; D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277.
- W. P. Griffith and S. V. Ley, *Aldrichim. Acta*, 1990, **23**, 13; S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, *Synthesis*, 1994, 639.
- 12 M. T. Reetz, J. Westermann, R. Steinbach, B. Wenderoth, R. Peter, R. Ostarek and S. Maus, *Chem. Ber.*, 1985, **118**, 1421; B. Weidmann and D. Seebach, *Helv. Chim. Acta*, 1980, **63**, 2451.
- 13 G. Wittig, W. Böll and K.-H. Krück, Chem. Ber., 1962, 95, 2514.

Communication 9/05019A